

Cross-validation of Precipitation Identification from NOAA/NSSL Ground-Radar-Based National Mosaic QPE (NMQ) System and **Crowd-Sourcing-Based mPING Weather Reports** Sheng Chen^{1,2}, Y. Hong^{1,2}, Q. Cao², J.J. Gourley³, Z.Flaming^{2,3}, J. Zhang³, K. Howard³, J.J. Hu⁴ ¹School of Civil Engineering and Environmental Science, University of Oklahoma ²Atmospheric Radar Research Center, University of Oklahoma, Norman, OK, U.S.A. ³NOAA/National Severe Storms Laboratory, Norman, OK, U.S.A ⁴School of Computer Science, University of Oklahoma, Norman, OK, U.S.A

I Introduction

Precipitation is the most important source of water over land and the critical component of hydrological cycle on the Earth. Accurate identification of precipitation types is prerequisite to reliable quantitative estimates of the spatial precipitation distribution over large scale region based on remote sensing platforms (such as ground radar and space-born precipitation sensors) and closely linked to the hazards monitoring and forecasting. The precipitation classification algorithm (PCA) embedded in the Next Generation National Mosaic & Multi-Sensor QPE (NMQ/Q2) system is developed aiming to improve radar-based quantitative precipitation estimates (QPE). The meteorological Phenomena Identification Near the Ground (mPING) is the first public-oriented platform to involve the public in the weather event observations. In this study, the PCA's performance is evaluated and quantified by the public reports collected by the mPING over the CONUS and eight cities .

III Methodology

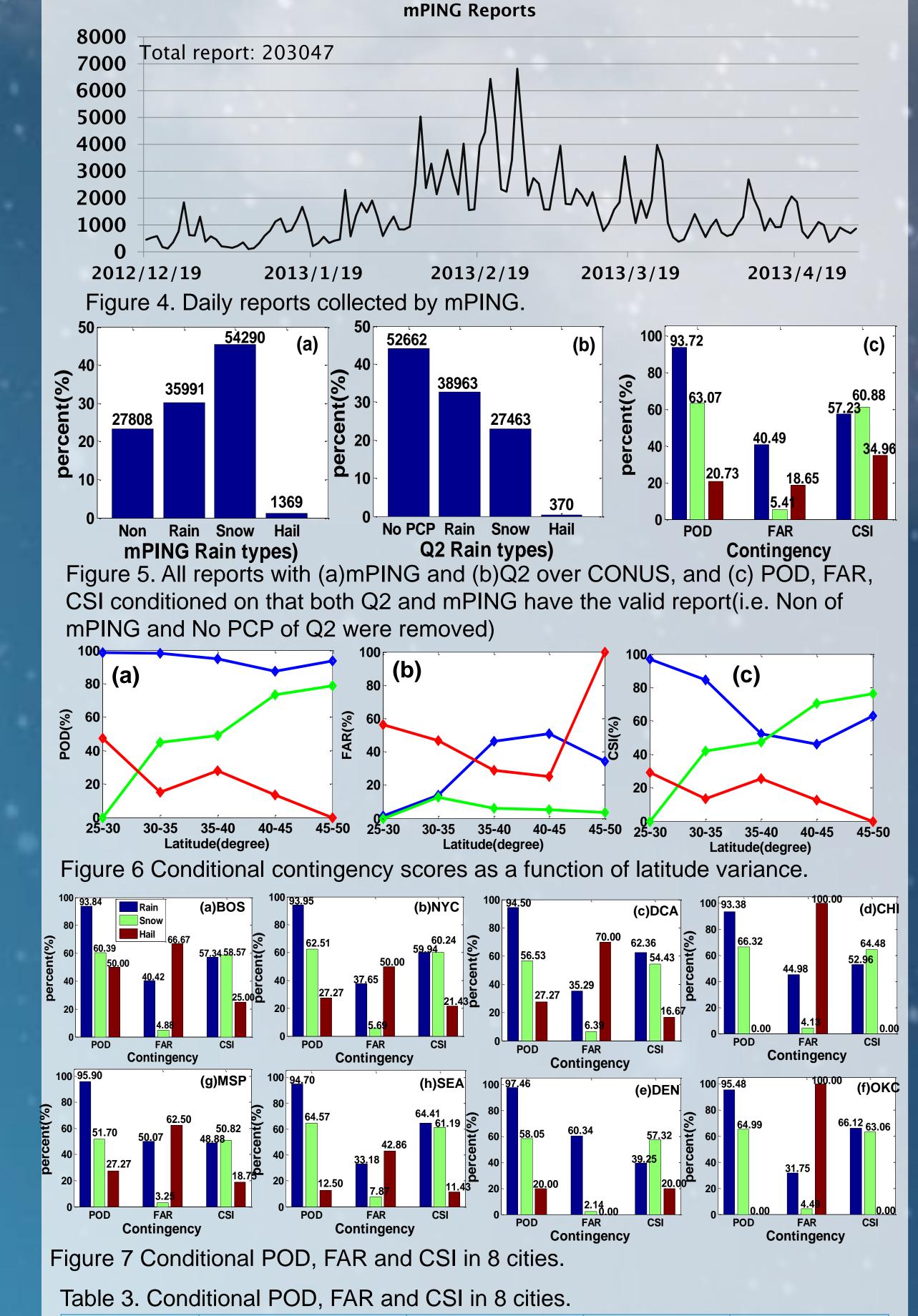
Time and location matching technology is applied to obtain the instantaneous matching pairs of mPING reports vs. Q2 reports(Figure 3) conditioning on: 1) time difference is less than ± 2.5 min; 2) both mPING reports and Q2 have valid records; 3) removal of the the non

IV Results

Figure 4 gives the daily series public reports collected by mPING from Dec. 19, 2012 to Apr. 30, 2013. Figure 5 shows the Q2 has very high rain POD (93.72%) and moderate snow POD (63.07%) over CONUS. Figure 6 shows that the PCA of NMQ have latitude dependency, especially the snow POD increases as latitude increases. Figure 7 shows Denver, Minneapolis-St. Paul City and Oklahoma City are the top three cities with highest rain POD (>90%). The top three cities with highest snow are Chicago, Oklahoma City and POD(>60%) Minneapolis-St. Paul City, respectively.

II Study Region and Data

The study region is continental United States (CONUS). The data are composed of NOAA/National Severe Storms Laboratory's (NSSL) next generation, high-resolution (1km/5min) National multi-sensor and Mosaic QPE (Q2) and 203047 mPING reports. Data time spans from Dec. 19, 2012 to Apr. 30, 2013. The mPING reports are considered as reference to assess PCA.


reports of mPING and the no data/precipitation of Q2; 4) mPING reports contained by Q2 grids.

3.1 Group Q2 and mPING precipitation types

Q2 precipitation type product has 11 precipitation types and mPING has 13 precipitation type. Both Q2 and mPING precipitation types were grouped into three precipitation types ,i.e. rain, snow/ice, hail.

Table 1: Groups of Q2 precipitation type definition.

6	Group	Q2 PCPFlag	precipitation type definition	
	Removal	-1	No data	
		0	No precipitation	
	Rain	1	Stratiform (rainfall)	
		2	Stratiform(Beam bottom>0 ° C) Bright band	
	Snow/ice	3	Snow	
		4	Snow (Beam bottom>1km AGL) (overshooting)	
	Removal	5	Not used	
	Rain	6	Convective (rainfall)	
	Hail	7	Hail	
	Removal	8	Not used	
	Rain	9	Tropical/warm rain (rainfall)	
	Table 2: Groups of mPING precipitation type definition.			
	Group	mPING	precipitation type definition	

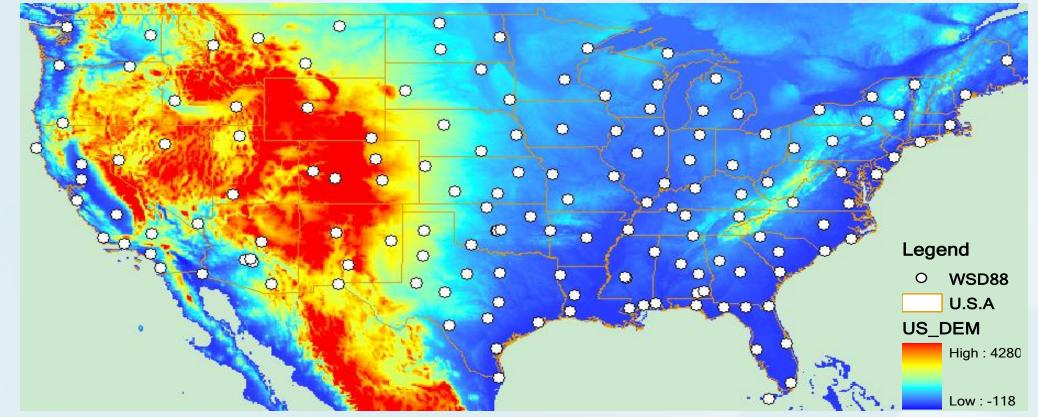
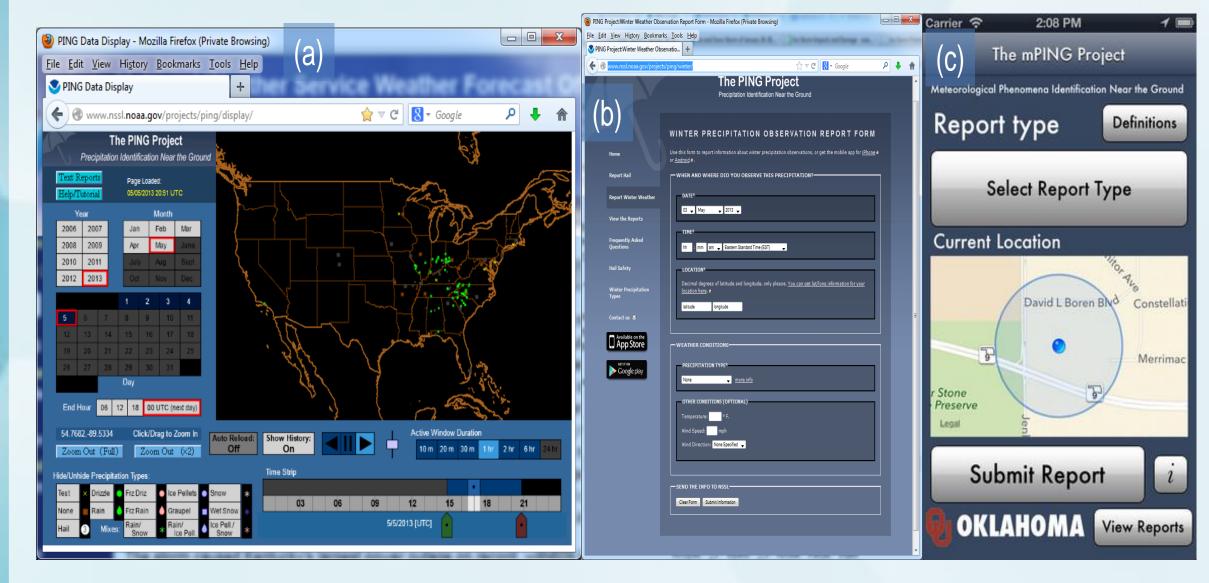



Figure 1 (a)Digital elevation and WSD88 Radar distribution over CONUS.

Figure 2 PNG system a	and user interface
-----------------------	--------------------

Group	Flag	precipitation type definition		
Rain	1	Drizzle		
Snow/ice	2	Freezing drizzle		
	3	Sleet		
	4	Snow		
Removal	5	None		
Rain	6	Rain		
Snow/ice	7	Freezing rain		
	8	Granuel		
	9	Wet snow		
	10	Mixed rain and snow		
	11	Mixed ice pellets and snow		
	12	Mixed rain and ice pellets		
Hail	13	Hail		

Given a binary value of yes/no for both the mPING reports and Q2 prediction, the categorical verification statistics: Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) are usually used to evaluate the correspondence between the mPING and Q2 reports.

	mPING-Yes	mPING-NO	
Q2-Yes	Hit(H)	False Alarm(F)	
Q2-No	Miss(M)	Correct Rejection(C)	

Туре	PING: Snow/Ice	PING: Rain	PING: Hail	Total
Q2: Rain	14085	22008	889	36982
Q2: Snow	24063	1348	29	25440
Q2: Hail	2	127	240	369
Total	38150	23483	1158	62791

Table 4. Conditional POD, FAR and CSI in 8 cities.

City Ab.	Total Report#	Population *	POD (Rain, %)	POD (Snow, %)	POD (Hail,%)
BOS	1978	636,479	93.84	60.39	50
NYC	2354	8,336,697	93.95	62.81	27.27
DCA	3056	632,323	94.50	56.53	27.27
CHI	3180	2,714,856	93.38	66.32	0
DEN	1277	634,265	97.46	58.05	20.00
ОКС	3139	599,199	95.48	64.99	0
MSP	2782	392,880	95.90	51.70	27.27
SEA	1256	634,535	94.70	64.57	12.50

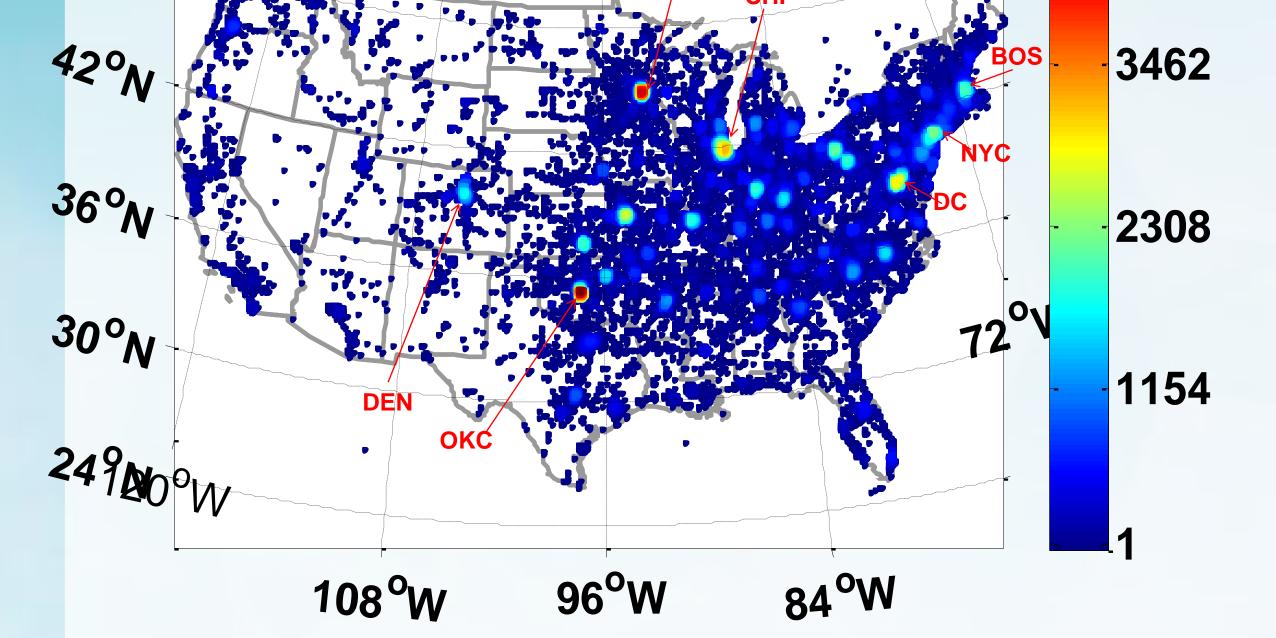



Figure 3 mPING-Q2 matching reports distribution over CONUS from Dec. 19 2012 to Apr. 31 2013.

In addition to the total POD, CSI and FAR over CONUS, the contingency is also computed as a function of latitude variation to explore the geographical dependence of the performance of PCA of NMQ.

V Conclusion

- 1) Q2 has high rain POD(93.72%) and moderate snow POD(63.07%) over CONUS.
- 2) The PCA of Q2 has latitude dependency. Snow POD increases from south to north, rain and hail POD decreases from south to north.
- and reliable in precipitation Q2 is smart 3) classification.
- 4) mPING is potential to be used for remote sensing and hydrological communities, e.g. the flash flood reports.

Reference:

Kimberly L. Elmore, et.al (2013), mPING: Crowd-Sourcing Weather Reports for Research, Bulletin of the American Meteorological Society(submitted).

Chen, S., et.al (2013), Using Citizen Science to verify Precipitation Type Reports of NOAA/NSSL National Mosaic & Multi-Sensor QPE (NMQ) Products: Are Radars as Smart as Human Beings? Bulletin of the American Meteorological Society(submitted).

