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Abstract—An innovative flood-prediction framework is devel-
oped using Tropical Rainfall Measuring Mission precipitation
forcing and a proxy for river discharge from the Advanced
Microwave Scanning Radiometer for Earth Observing System
(AMSR-E) onboard the National Aeronautics and Space Admin-
istration’s Aqua satellite. The AMSR-E-detected water surface
signal was correlated with in situ measurements of streamflow
in the Okavango Basin in Southern Africa as indicated by a
Pearson correlation coefficient of 0.90. A distributed hydrologic
model, with structural data sets derived from remote-sensing
data, was calibrated to yield simulations matching the flood fre-
quencies from the AMSR-E-detected water surface signal. Model
performance during a validation period yielded a Nash—Sutcliffe
efficiency of 0.84. We concluded that remote-sensing data from
microwave sensors could be used to supplement stream gauges in
large sparsely gauged or ungauged basins to calibrate hydrologic
models. Given the global availability of all required data sets, this
approach can be potentially expanded to improve flood monitoring
and prediction in sparsely gauged basins throughout the world.

Index Terms—Digital elevation models (DEMS), distributed
hydrologic modeling, floods, passive microwave sensors, satellite
remote sensing.
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I. INTRODUCTION

LOBALLY, sparse in situ hydrometeorological networks

are the main source for quantitative water resource man-
agement. Over the past half-century, hydrologic analyses such
as flood and drought risk assessments have been dependent
on these in situ data sources. Hydrologic runoff models and
land surface models are typically driven by observations of
rainfall to predict hydrologic extremes. Therefore, adequate
observations of hydrologic variables play a critical role in water
resource planning and management. Unfortunately, large areas
of the Earth’s surface lack in sifu observations that impede
accurate quantification of the water budget. Many nations are
sparsely gauged, and in some countries, existing measure-
ment networks are declining [1]-[4]. Evidently, the lack of
in situ observations limits the implementation and calibration
of hydrologic models for early warning and decision-making
systems in these regions.

To address the limited-data-availability issue in ungauged
regions, the International Association of Hydrological Sciences
launched research efforts such as the Predictions in Ungauged
Basins (PUB) initiative in 2003. One of the PUB science
objectives is to integrate remote-sensing data into hydrologic
models [5]. More recently, several efforts have been directed
on the use of widely available satellite remote-sensing data to
complement in sifu hydrologic observations over vast ungauged
regions. Several studies proposed the optimal use of satellite
precipitation products for flood prediction [6]-[11]. The advan-
tage of these precipitation data sets is the global availability
over regions where ground networks are nonexistent. In addi-
tion to satellite precipitation, efforts are under way to monitor
changes in river discharge remotely from space.

At present, river discharge cannot be estimated directly from
satellite sensors. Remotely observable hydraulic variables such
as water level height, width, sinuosity, and area are used to
approximate river runoff. Recently, passive microwave sen-
sors have been used to detect river discharge changes. Ad-
vanced Microwave Scanning Radiometer for Earth Observing
System (AMSR-E) brightness temperatures at 36 GHz and
H-polarization have been used to detect floods around the world
[12]. This technique relates changes in brightness temperature
between wet measurement pixels (M) centered over rivers and
dry calibration pixels (C') that are not affected by the river.
River flooding is detected by comparing a signal from the wet
pixels and that from a nearby calibrating pixel [13], there-
fore generalizing the technique to make it applicable every-
where, using microwave data from both AMSR-E and Tropical
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Rainfall Measuring Mission (TRMM). This technique is used
for flood detection and mapping [14] but not for flood forecast-
ing. Some studies revealed the application of the AMSR-E sen-
sor for discharge estimation [5], [11], [15], [16]. Furthermore,
there are ongoing efforts to use altimeter and soil moisture data
for inland water level and discharge estimation from space [13],
[17]-[19].

In this letter, a novel framework is developed by integrating
microwave satellite remote sensing along with rainfall estimates
from TRMM into a distributed hydrologic model for flood
early warning in data-poor regions. This proof-of-concept study
proposes a hydrologic prediction system that is based entirely
on observations from remote-sensing platforms. The data sets
required to set up the model (i.e., digital elevation model, soil
types, land use, evapotranspiration, etc.) all are remotely sensed
data available in public domains. As such, the applicability of
the method and, thus, the capability to provide flood estimates
are potentially global. The impetus is to use the AMSR-E
brightness temperature to detect surface water changes and to
calibrate a hydrologic model. The proxy discharge is the ratio
of brightness temperatures of a wet pixel and a dry pixel, more
frequently referred to as measurement (M) and calibration (C)
area [12], a proxy for river water surface change. The Dart-
mouth Flood Observatory’s River Watch and the Global Flood
Detection System (GFDS) of the Joint Research Centre of the
European Commission are using this M /C' ratio globally for
flood detection [14], [20]. We propose to employ the AMSR-E-
detected water surface signal (M/C ratio) to benchmark a
distributed hydrologic model, for the first time, to estimate
floods in ungauged basins.

II. DATA, MODEL, AND FRAMEWORK

A characteristic feature of the framework is the utilization
of the AMSR-E-based water surface signal instead of measured
river runoff to calibrate a hydrologic model. The Coupled Rout-
ing and Excess Storage (CREST) [18] is a distributed model
that computes the runoff generation and flow routing processes.
The model runs on a user-specified time step and is composed
of soil moisture storage, runoff generation, and a flow routing
routine. A brief summary of the model components is outlined
as follows: 1) data flow module based on cell-to-cell routing;
2) three different layers within the soil profile that affect the
maximum storage available in the soil layers (this representa-
tion of within-cell variability in soil moisture storage capacity
and within-cell routing can be employed for simulations at
different spatiotemporal scales); and 3) coupling between the
runoff generation and routing components via feedback mech-
anisms [9], [18]. The CREST model is composed of modules
enabling daily estimation of evapotranspiration, soil water con-
tent, flow routing, and flow generation within a cell, through
the drainage network. The a priori values of the physical
parameters are derived from geomorphological characteristics
from remotely sensed and in situ data.

The CREST model uses digital elevation data processed
from the Shuttle Radar Topography Mission [21] to gener-
ate flow direction, flow accumulation, and contributing basin
area. The key forcing data sets are the satellite precipitation
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Fig. 1. Upper Okavango Basin with the Okavango River spanning Angola and
Namibia. Location of the stream gauging station at Rundu, Namibia.

product from the TRMM Multisatellite Precipitation Analysis
(3B42RT) [22] and evapotranspiration from the Famine Early
Warning Systems Network (http://earlywarning.usgs.gov/fews/
global/index.php). The hydrologic model can be calibrated in
many ways, but the method employed herein is an autocal-
ibration technique based on the simple but robust adaptive
random search (ARS) method [23], [24]. The CREST model
structure and calibration description are detailed in [18], [25],
and [26].

The geophysical characteristics such as the low elevation
and land cover have a substantial influence on the hydraulic
roughness in floodplains. Meteorological parameters, primarily
precipitation in the upstream catchment, control the inflow,
while precipitation and evapotranspiration over the delta itself
contribute to more spatially distributed water availability and to
the recharging of the ground water [27]. The general hydrology
of the Okavango Delta has been described in the literature
[18], [21], [27], [28], and application of satellite remote-
sensing techniques for flood monitoring has been discussed
in [26] and [29]-[31]. The Okavango River flows through
Angola, Namibia, and Botswana, with the predominant runoff-
contributing areas coming from Angola [28]. The hydrologic
model was implemented in the upper part of the Okavango
Basin in Southern Africa (Fig. 1), which is representative of
many poorly gauged and ungauged basins. River discharge
data were used to evaluate the performance of the proposed
method from the Rundu telemetry station, with an upstream
catchment area of 95 642 km?, located on the main stem of the
Okavango River (Fig. 2).

III. SATELLITE-BASED FLOOD FREQUENCY APPROACH

Flood-monitoring techniques are developed based on the
relationship between soil moisture and runoff for other catch-
ments in Africa [29], [32] and also used for hydrologic pre-
diction [33]. Typically, hydrologic models are calibrated from
streamflow observations at the basin outlet. We propose to use
the satellite-based surface water fluctuation signal to calibrate a
hydrologic model. The AMSR-E-based GFDS monitors water
surface signal at 10000 monitoring areas around the world
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Fig. 2. Time series of (black line) AMSR-E-detected water surface signal
(M /C ratio) and (shaded area) gauged runoff.

(http://www.gdacs.org/flooddetection/). The sensor can provide
discharge signal at multiple locations in a catchment and thus
can reduce the dependence on gauged runoff to calibrate hy-
drologic models at the basin outlet. This approach is applied
to medium- to large-size basins; however, the accuracy of the
AMSR-E-based GFDS for basins with drainage areas lower
than 50 000 km? needs further investigation.

The AMSR-E-detected water surface signal correlated
closely with the observed runoff with a correlation coefficient
(CC) of 0.90 from 2002 to 2007 at Rundu, upper Okavango
Basin in Namibia (Fig. 2). The AMSR-E-detected water surface
signal (M/C ratio) captures high flow peaks each year; how-
ever, the signal is insensitive to discharge fluctuations during
low flows. In this study, we used the observed discharge data
to calibrate the CREST model [Fig. 3(a)]. Next, we designed
a model calibration strategy for flood prediction (i.e., for high
flows) that readily accommodates the AMSR-E-detected water
surface signal. The method was designed with the realization
that the AMSR-E signal provides no direct information about
discharge magnitude but is highly correlated with observed
discharge for significant flows.

The calibration method, called the flood frequency approach,
first requires the conversion of model-simulated flows to daily
exceedance frequencies. A time series of simulated flows was
generated for the precipitation period of record, which was
2002-2007 in our case. Then, we performed a flood frequency
analysis on the continuous record of streamflow simulations to
estimate flood magnitudes and associated return periods. This
flood frequency approach using a distributed hydrologic model
has been shown to improve the accuracy of flood prediction in
ungauged basins and can remove model bias [34], [35]. The
novelty of the approach presented herein is that we can calibrate
the model by integrating proxy discharge observations using the
AMSR-E signal.

The time series of the AMSR-E-detected water surface sig-
nal was converted to frequencies in the same manner as the
simulations, i.e., by computing the daily exceedance frequency
(or probability) based on the period-of-data-flow exceedance
curve (or flow duration curve). In this way, frequencies com-
puted from CREST model simulations are directly compara-
ble to those computed from the AMSR-E discharge signal.
The ARS calibration method was from 2002 to 2005 to op-
timize model parameters so that simulated flow frequencies
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Fig. 3. (a) (Shaded area) Observed gauge runoff, TRMM sensor precipitation,
and (solid line) CREST model calibration. (b) (Shaded area) Observed gauge
runoff, (solid line) M /C ratio, and (dashed line) exceedance probabilities of
CREST calibration using M /C ratio. (c) [same as (b)] for CREST validation
period.

matched the frequencies observed from the AMSR-E discharge
signal. Results during the calibration period of 2002-2005
show good agreement in the frequency domain between the
AMSR-E-detected water surface signal and observed flows
with a probability of exceedance < 25%, including peak flows
[Fig. 3(b)]. The CREST model calibrated with the AMSR-E-
detected water surface signal (i.e., M /C ratio) also agreed well
with the time series of observed flow frequencies according to
a Nash—Sutcliffe efficiency (NSE) of 0.90 and a CC of 0.80
[Fig. 3(b)]. The high NSE value is partly due to the strong
seasonality of discharge.

The hydrologic model was able to represent the behavior
of low flows better than the AMSR-E observations due to its
use of physical principles. Fig. 3(c) shows the results during
the validation period from 2006 to 2007. Similar to the re-
sults obtained during calibration, the AMSR-E signal matched
the observations very well for high flows with a probability
of exceedance < 25%. The detected water surface signal is
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prone to random errors for low flows, i.e., those with greater
probabilities of occurrence. However, when the AMSR-E-based
discharge signal was used to calibrate the CREST model, the
low flows were much more accurately simulated.

Overall, the AMSR-E-calibrated CREST model had an NSE
of 0.84 and a CC of 0.96, indicating that the model parameters
estimated from the flood frequency approach are applied well
to the validation period. It is noted that the model under-
estimated the magnitude of the peak flows with the lowest
probability of exceedance. Given the limitations of the AMSR-
E signal as it relates to the observed water surface signal
combined with hydrologic model error, it is suggested that the
developed approach be implemented by considering thresh-
olds for probability exceedances. For instance, the model is
skillful in predicting the occurrence and nonoccurrence of rare
events, i.e., those that occur < 25% of the time. This binary
approach to flood prediction will be very useful to provid-
ing simple flood-versus-no-flood estimates to any basin where
the AMSR-E signal corresponds (i.e., covaries) with observed
discharge.

IV. DISCUSSION AND FUTURE WORK

This proof-of-concept study demonstrated the efficacy of
satellite remote-sensing data for flood prediction in poorly
gauged basins. In particular, a distributed rainfall-runoff model
calibrated with unconventional data using a flood frequency
approach was shown to implicitly simulate the basin’s runoff
response to rainfall. Moreover, the geophysical and hydro-
logic parameters for the Okavango Basin are derived from the
remote-sensing data. The remotely sensed data products can
thus be used to condition different parameters, and equifinality
of the parameter set can be minimized. The study has thus
demonstrated the capability to set up a distributed hydrologic
model and calibrate its parameters using forcing from rain-
fall and proxy discharge without the need for any in situ
measurements. The Okavango study basin had the benefit of
a stream gauge, so we were able to validate the hydrologic
model simulations and thus demonstrate the flood frequency
calibration approach using TRMM rainfall and the AMSR-E-
detected water surface signal. Although the NSE and CC are
high and the differences between the CREST model results are
not substantial, it remains difficult to interpret the results due to
the uncertainties that result from model and input data uncer-
tainties. Thus, further research should focus on how to evaluate
the remote-sensing flood frequency approach with model and
input data errors in different smaller basins worldwide under a
variety of hydroclimatic and land cover conditions. Future work
should also benchmark model performance by comparison to
a model that was calibrated conventionally using observed
discharge from stream gauges. It is envisioned that near-future
satellite missions such as the Soil Moisture Active and Pas-
sive mission [31] for global soil moisture, the Surface Water
and Ocean Topography mission for river discharge estimates
[36], and the Global Precipitation Measurement mission [37]
integrated into the proposed framework will materialize into
operational flood-prediction systems in ungauged regions of the
world.
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